I. (15 pts$)$ Find the length of the following curve:

$$
y=x^{4}+\frac{1}{32 x^{2}} \quad 1 \leq x \leq 2
$$

II. (10 pts) Find the length of the following curve:

$$
x=(y+1)^{\frac{2}{3}} \quad-1 \leq y \leq 0
$$

III. (15 pts) Find the length of the parametric curve provided below:
$x=3 \sin t$
$y=3 \cos t$

$$
0 \leq t \leq 2 \pi
$$

IV. (15 pts) Find the volume of the solid generated by rotating the region $0 \leq y \leq 1-x^{2}$ about the line $y=1$.
V. (15 pts) Find the volume of the solid generated by revolving the region bounded by the curves $y=\frac{1+\sin x}{x}, y=\frac{1}{x}$ and the lines $x=0$ and $x=\pi$ about the y axis. Use the Shell Method.
VI. (10 pts) A solid lies between planes perpendicular to the x -axis at $x=1 \& x=4$. Its cross section perpendicular to the x -axis between these planes is an equilateral triangle with base running from $y=\sqrt{x}$ to the axis. Find the volume of this solid.
VII. (20 pts - 10 pts each) Given $\vec{u}=2 \vec{i}+4 \vec{j} \quad \& \quad \vec{v}=3 \vec{i}-3 \vec{j}$
a) Find $3 \vec{u}-2 \vec{v}$
b) Find $\cos \left(\begin{array}{ll}\vec{u} & \vec{v} \\ & \end{array}\right)$

